
6.842 Randomness and Computation February 14, 2022

Lecture 5
Lecturer: Ronitt Rubinfeld Scribe: Nadia Koshima

1 Overview

• Uniform Generation

– Example with uniform generation of DNF solutions

• Counting Problems

– Counting classes

– #DNF

• Approximate Counting

– Counting classes, #P

– Exact vs Approximate Counting

– Approximate #DNF

– Downward Self-Reducibility Trees

2 Uniform Generation: DNF Formula

Uniform generation is a type of problem where we aim to create a uniform distribution from one that is
variable. As an example, we will be looking at an algorithm for randomly sampling solutions for a DNF
formula.

2.1 Disjunctive Normal Form(DNF)

DNF Formulas are boolean formulas that can be described as ”OR of ANDs.” DNF formulas take the
general form of

φ(x1, x2, ..., xn) = C1 ∨ C2 ∨ ... ∨ Cm

where conjunction Ci = xi1 ∧ xi2 ∧ ... ∧ xi|Ci|
and xij ∈ {x1, x̄1, x2, x̄2, ...}

An example of this would be

φ(x1, ..., xn) = x1x̄2x3 ∨ x2x̄3x4x10 ∨ x8x̄10x11 ∨ ...

Note how we can write multiplication of variables as implicit ANDs (∧), and generally can leave them
out of notation.

2.2 Task: Find one satisfying assignment to φ

This is pretty easy! We just have to pick one literal and set the respective variables to TRUE (or false if
x̄i), and then set all other variables randomly. The only case in which there is no satisfying assignment
is if xi and x̄i both exist in that literal because then we have a contradiction.

1

2.3 Task: Find random satisfying assignment to φ

This is a bit trickier since, by random, we mean that we want to be able to sample a satisfying assignment
uniformly.

2.3.1 Special Case: only one conjunction

In this case we only have one conjunction:

φ(x1, x2, ..., xn) = xi1xi2 ...xi|C1| for xij ∈ {x1, x̄1, x2, x̄2, ...}

For example:
F (x1, x2, x3, ..., xn) = x1x̄2x3

In this example, the satisfying assignment would be any s.t.

x1 = T , x2 = F , x3 = T

Therefore, to generate a random satisfying assignment to F :
Let x1 = T , x2 = F , x3 = T
and pick x4, ..., xn randomly from {T, F}

In general, in the case of one conjunction, we can satisfy the literal and set other variables randomly.

2.3.2 Two Conjunction Case

Our algorithm attempt will be as follows:

1. Pick i ∈ {1, 2} (essentially pick one of the two conjunctions to satisfy)

2. Set variables in conjunction Ci to TRUE

3. Set other variables randomly

Example: F = x1x2 ∨ x3

1. Pick conjunction 1

2. Set x1 = x2 = T

3. Set x3 = T

Is this a uniform sampling? We can look at the space of satisfying assignments, grouped by conjectures:

2

From the image, we can see that the assignment TTT has a higher probability of being selected, as
it is a satisfying assignment to both conjunctions. Furthermore, we can see the number of satisfying
assignments for each conjunction also creates an unequal distribution, as x1x2 has less assignments. Both
issues create unfair sampling. To look at the probability of sampling each assignment more specifically:

P (randomly sampling TTF in F) = P (randomly sampling C1) ∗ P (randomly sampling TTF in C1)

=
1

2

1

2

=
1

4

P (randomly sampling TFT in F) =
1

2

1

4
=

1

8

P (randomly sampling FTT in F) =
1

8

P (randomly sampling FFT in F) =
1

8

P (randomly sampling TTT in F) = P (randomly sampling C1) ∗ P (randomly sampling TTF in C1)

+P (randomly sampling C2) ∗ P (randomly sampling TTF in C2)

=
1

4
+

1

8
=

3

8

To summarize why this variable probability distribution occurs in sampling F:

1. Second conjunction has more assignments which means P (randomly sampling S in Cj) where S is
one satisfying assignment for Cj is not uniform over all j

2. Some assignments may satisfy more than one conjunction (i.e. TTT in this case)

3

2.3.3 Fixed algorithm for any number of conjunctions

To fix the problems with the previous algorithm, we will use the two following fixes:

1. Sample conjunction proportionally to the number of satisfying assignments (ie for Ci

proportional to |Ci|)

2. If assignment satisfies more than one conjunction, “correct” for it by using rejection sampling

One way we might view the space of satisfying conjunctions for a DNF formula with three conjunctions
is:

Here, the numbers in black show how many conjunctions an assignment occupying that space would
satisfy and is somewhat proportional to how much more likely that assignment would be sampled, using
our initial naive method. For example, an assignment at the intersection of all three conjunctions would
be approximately three times more likely to be sampled – to correct this, we toss a coin with bias of 1

3
to decide whether or not to accept, thus performing rejection sampling. We would also need to do this
for an assignment at the intersection of any two different conjuctions – again, we want to correct with
a coin toss (this time with bias 1

2).
Now that we understand the intuition behind what changes we might make, we can specify the algorithm.

Algorithm: Let Ai be the set of assignments that satisfy conjunction Ci, specifically

Ai ← {x̄ = (x1, x2, ..., xn)|x̄ satisfies Ci}

Algorithm 1 Algorithm for randomly sampling a satisfying assignment

input φ = ∨mi=1Ci (formula)
Let Ai ← {x̄ = (x1, x2, ..., xn)|x̄ satisfies Ci}

repeat

Pick i with probability |Ai|∑m
j=1 |Aj | ▷ |Ai| = 2n−kwhere k is # of variables in Ai

Pick uniform assignment b̄ in Ai

Let tb̄ ← |{j|b̄ satisfies Aj}| ▷ tb̄ is the number of conjunctions satisfied by b̄

Output b̄ with probability 1
b

until we succeed with an accepted assignment

4

Note: In each round, tb ≥ 1 since we know that it at least satisfies Ai.

How this algorithm generates uniformity: We will look at the probability that some satisfying
assignment b̄ is output in any round.

P (output b̄ in round i) = P (accepting b̄)

 ∑
j∈[m]|b̄∈Aj

P (pick j in round i) ∗ P (pick b̄ from Aj)



P (output b̄ in round i) =
1

tb̄

 ∑
j∈[m]|b̄∈Aj

|Aj |∑m
k=1 |Ak|

∗ 1

|Aj |


Note that |Ai| cancels out in the summation, and as a result, the summation now contains a probability
independent of j. Therefore, we get:

P (output b̄ in round i) =
1

tb̄
∗ tb̄∑m

k=1 |Ak|

P (output b̄ in round i) =
1∑m

k=1 |Ak|

Note that the resulting probability is the same for all b̄ regardless of how many conjunctions it satisfies,
and thus, we we have achieved uniform sampling.

Runtime: We will now look at the runtime of this algorithm.

P (loop succeeds ≥ 1

max tb̄
≥ 1

m

Therefore,
E[# of loops until succeed] ≥ m

The runtime of each loop is poly(m+n).

3 Counting Problems

3.1 Counting Classes

Counting complexity classes involve being able to count the number of accepted solutions to a given
problem (SAT, 3SAT, Knapsack, Subset sum, etc) in a certain amount of time (P, NP, EXP, etc).

Definition 1 (#P) Class of problems that count the number of accepted paths in poly-time non-
deterministic Turing Machines.

Definition 2 (#P-Complete) Class of problems that are

• in #P

• every problem in #P has a Turing reduction or poly-time reduction to it

The #SAT problem, which counts the number of satisfying assignments to Boolean formula φ, is #P-
Complete.

5

3.2 #DNF

We might think that, since DNF is in P, that this problem would be easier. One initial thought to
approaching this problem is counting the number of solutions of each Ai, without taking intersections
into consideration. Then, we could use Inclusion-Exclusion Principle to account for assignments that
are repeated. However, the problem with this is that it would create an exponential amount of terms,
meaning that our runtime would also be exponential.
It turns out that #DNF is computationally hard. One reason why is due to this fact: if #DNF ∈ P ,
then #CNF ∈ P . Why? Well, given any φ in CNF:

φ is satisfiable iff φ̄ has > one unsatisfying assignment (or < 2n − 1 satisfying assignemnts)

Or a better way to view it:

of assignments to φ = 2n− # assignments to φ̄

Why is this true? Well, we can use DeMorgan’s Law to convert between ¯CNF formulas and DNF
formulas:

Definition 3 (DeMorgan’s Law) Shows how to relate Boolean statements to their opposites:

• A ∨B = A ∧B

• A ∧B = A ∨B

Notice that the second equation shows how to convert a CNF formula (φ̄) to a DNF formula. Therefore,
we can reduce counting the number of assignments that CNF formula φ has to counting the number of
assignments DNF formula φ̄ has, which is in #DNF.
However, it turns out that #DNF is #P-complete.

4 Approximate Counting

Definition 4 (Randomized Approximation Scheme) Given Boolean formula φ and ϵ > 0 as a
parameter. Define z to be the number of satisfying assignments to φ. A randomized approximation
scheme is one that outputs y such that

z

1 + ϵ
≤ y ≤ z(1 + ϵ)

with probability ≥ 3
4 .

Definition 5 (Fully Polynomial Randomized Approximation Scheme (FPRAs)) FPRAs are ran-
domized approximation schemes (as defined above) that are polynomial in |φ| and 1

ϵ .

4.1 FPRAs for SAT → randomized PTime algorithm for SAT

In this section, we will prove how having an FRPA for SAT implies that there exists a randomized PTime
algorithm for SAT.

Algorithm 2 Algorithm for converting SAT FPRA to SAT randomized PTIME algorithm

Given formula φ

y ← call FPRAs algorithm on φ with ϵ > 0
if y > 0 then

output“satisfiable”
else

output “unsatisfiable”

6

Correctness This works because:

• If φ is satisfiable, then z ≥ 1 (#φ) and y > 1
1+ϵ > 0. Therefore the algorithm would output

“satisfiable.”

• If φ is unsatisfiable, then z = 0 (#φ) and y = 0. Therefore the algorithm would output “unsatis-
fiable.”

In both cases, the algorithm outputs the correct response to a given Boolean formula φ with probability
≥ 3

4 . Therefore, it seems unlikely that we can find an FPRAs for SAT. However, we can approximate
#DNF in polynomial time.

4.2 Exact vs Approximate Counting

Approx Counting
DNF coNP-complete #P-complete polytime
CNF NP-complete #P-complete hard

Perfect Matching P #P-complete polytime
Spanning Trees P P polytime

4.3 Approximate Counting for DNF

To accomplish this, we will use two main ideas:

• uniform generation of DNF sat assignments (algorithm 1)

• “downward self-reducibility” of DNF

Definition 6 (Downward Self-Reducible (DSR)) A problem is downward self-reducible if we can
compute the problem by solving smaller and smaller subproblems and putting together answers via
polytime computation.

For #DNF, this means recursively solving smaller problems with one less variable. To put it more
formally, #DNF is DSR because we can solve a given φ by computing:

#φ(x1, ..., xn) = #φ(x1 = T, x2, ..., xn) + #φ(x1 = F, x2, ..., xn)

Both equations on the right-hand side are still DNFs but with n − 1 variables – basically by choosing
the value of x1, we can simplify φ.
Example

#(x1x̄2 ∨ x1x2 ∨ x̄2) = #(x̄2 ∨ x2 ∨ x̄2) + #(x̄2)

As we can see, the righthand side is constituted of the boolean function where x1 = T and the boolean
function where x1 = F . We can also represent this relation as a downward self-reducibility tree:

As we can see above, the node represent the equation given the settings of variables up until that point
and the edges represent what the variable is set to. Each level i, where the root is level 0, represents
possible configurations after setting xi. We show a general form for this representation in the next
section.

7

4.4 Downward Self-Reducibility Tree

As shown above, each node is the sum of its children, which have one more variable set. The leaves,
therefore, are each possible way to set variables x1 through xn, and they either satisfy φ (colored green)
and don’t satisfy φ (colored red). Thereby, the number of satisfying assignments is just the number of
green leaves.
Example

8

In this downward self-reducibility tree, we can see that the number of satisfying assignments to the
earlier example is three.

4.5 Approximate Counting Algorithm for #DNF

Let S1 = F1

F → F = F1

S1
. S1 is the fraction of satisfying assignments such that x1 = T . Instead of trying

to estimate F directly, we can estimate S1 through sampling, and use that to find F. That’s the basic
idea behind this algorithm.

9

